Información de Asignatura

CALCULO IV: CALCULO COMPLEJO - 529202

  • Descripción :Asignatura teorico-practica que introduce al alumno(a) en los conceptos basicos del calculo complejo en un variable y sus aplicaciones. Esta asignatura contiene los conceptos basicos y esenciales para contribuir a la formacion del pensamiento logico, formal, heuristico y algoritmico.
  • Resultados aprendizaje esperados :Al completar en forma exitosa la asignatura, los estudiantes seran capaces de:
    1. Manejar con destreza la operatoria con los conceptos de derivada compleja, de integral compleja y de series de potencias.
    2. Relacionar las ecuaciones de Cauchy-Riemann con la derivabilidad de una funcion compleja.
    3. Interpretar el concepto de funcion analitica, el concepto de funcion harmonica y la relacion entre estos conceptos.
    4. Identificar las propiedades de las funciones analiticas.
    5. Reconocer la funciones complejas elementales
    6. Interpretar el concepto de integral compleja como integral sobre contornos.
    7. Manejar los resultados dados por los teoremas de Cauchy-Goursat, la formula integral de Cauchy, de Liouville y de Morera.
    8. Manejar con destreza la operatoria con los conceptos de series complejas de potencias y sus respectivas series de Taylor y de Laurent.
    9. Interpretar los conceptos de residuos y polos y aplicarlos a calculo de integrales reales.
    10. Relacionar los conceptos de transformaciones conformes y aplicar tales conceptos a problema de valores de contornos.

  • Contenidos :1. El espacio de los numeros complejos: estructura algebraica y topologica.
    2. Funciones de una variable compleja: limites, continuidad; derivadas, ecuaciones de Cauchy-Riemann.
    3. Funciones analiticas: singularidades aisladas; puntos de ramificacion; funciones armonicas.
    4. Funciones complejas elementales: funciones exponenciales, trigonometricas, logaritmicas, potencias complejas y funciones hiperbolicas.
    5. Integracion compleja: integracion sobre contornos, singularidades, teorema de Cauchy-Goursat, formula integral de Cauchy, teoremas de Liouville y Morera.
    6. Sucesiones y series complejas: sucesiones y sereis, criterios de convergencia, series de potencias, sereis de Taylos, series de Laurent.
    7. Residuos: residuos y polos, clasificacion de singularidades; evaluacion de integrales reales mediante residuos; teoremas de Schwarz y Rouche; prolongacion analitica.
    8. Transformaciones conformes: parametrizacion de curvas; funciones inversas; transformaciones conformes; aplicaciones a problemas de valores de contorno; transformaciones de Schwarz-Christoffel.
    9. Aplicaciones: aplicaciones en teoria del potencial; apliciones a problemas diferenciales.

  • Metodología :Esta asignatura consta de 3 horas de clases teoricas y 2 horas de clases de practica. En las horas teoricas el profesor motiva, construye y relaciona los conceptos; deduce y demuestra algunas propiedades y las ilustra mediante ejemplos directos, aplicaciones y resoluciones de problemas correspondientes a modelos de las ciencias basicas. En las horas practicas el alumno desarrolla, bajo la supervision de un alumno ayudante, una guia de ejercicios entregada anticipadamente por el profesor. Ademas este alumno ayudante presenta las soluciones de estos ejercicios.
    El alumno debe complementar su estudio resolviendo un listado de ejercicios por cada tema del programa.
    El material del curso: Apuntes de clases, guias de practicas, listado de ejercicios y pautas de correccion de evaluaciones se entregaran a traves de la plataforma Infoalumno. El alumno podra consultar al profesor dudas o cualquier asunto relacionado con la asignatura en la oficina de este en su horario de tutorias o a traves de correo electronico.

  • Evaluación :De acuerdo al Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Fisicas y Matematicas. Dos evaluaciones de 45 y 55% de la nota final. Una evaluacion de recuperacion consistente en un examen con ponderacion del 40% de la nota final.
  • Facultad :CS FISICAS Y MATEMATICAS
  • Departamento :MATEMATICA
  • Creditos :4
  • Creditos Transferibles:
  • Duración :SEMESTRAL
  • Horas Teóricas :3
  • Horas Practicas :2
  • Horas Laboratorio :0
  • PDF Documento

Emergencias

Emergencias Personales
Guardias UdeC: 41 220 3000
Policlínico ACHS*:41 220 4577
Ambulancia ACHS: 1404
Asistencia Covid-19: 22 820 3002
Emergencias Químicas

MATPEL:
41 220 3330 / 41 220 7352

Externos
Ambulancia: 131
Bomberos: 132
Carabineros: 133
PDI: 134